

文档编码: 01.13.000003

目录
YDLIDAR x4 开发套件2
开发套件2
Windows 下的使用操作
设备连接3
驱动安装4
使用评估软件5
开始扫描6
系统设置6
数据保存7
测距频率8
角度校准8
固件升级8
软件升级8
Linux 下基于 ROS 的使用操作9
文件说明9
配置说明10
设备连接11
ROS 驱动包安装11
RVIZ 安装11
RVIZ 查看扫描结果11
修改扫描角度问题
使用注意13
环境温度13
环境光照13
供电需求13
修订14

YDLIDAR X4 开发套件

YDLIDAR X4(以下简称: X4)的开发套件是为了方便用户对 X4进行性能评估和早期快速 开发所提供的配套工具。通过 X4的开发套件,并配合配套的评估软件,便可以在 PC 上观测 到 X4 对所在环境扫描的点云数据或在 SDK 上进行开发。

开发套件

X4的开发套件有如下组件:

图 1 YDLIDAR X4开发套件

表1 YDLIDAR X4 开发套件说明

组件	数量	描述
X4 激光雷达	1	标准版本的 X4 雷达,内部集成电机驱动,可实现对电机的停转控制和 电机控制。
USB 数据线	1	配合 USB 转接板使用,连接 X4 和 PC 既是供电线,也是数据线
USB 转接板	1	该组件实现 USB 转 UART 功能,方便 X4、PC 快速互联同时,支持串口 DTR 信号对 X4 的电机转停控制另外提供用于辅助供电的 MicroUSB 电源接口(PWR)
PH2.0-8P 端子线	1	该组件满足用户在多平台环境下的开发需求
备用皮带	1	备用皮带,提高雷达寿命

注: USB 转接板有两个 MicroUSB 接口: USB_DATA、USB_PWR。

USB_DATA: 数据供电复用接口,绝大多数情况下,只需使用这个接口便可以满足供电和通信需求。

USB_PWR: 辅助供电接口,某些开发平台的USB 接口电流驱动能力较弱,这时就可以使用辅助供电。

WINDOWS 下的使用操作

设备连接

在 windows 下对 X4 进行评估和开发时, 需要将 X4 和 PC 互连, 其具体过程如下:

图 2 YDLIDAR X4 设备连接 STEP 1

图 3 YDLIDAR X4 设备连接 STEP 2

先将转接板和 X4 接好,再将 USB 线接到转接板和 PC 的 USB 端口上,注意 USB 线的 Micro 接口接 USB 转接板的 USB_DATA,且 X4 上电后进入空闲模式,电机不转。

部分开发平台或 PC 的 USB 接口的驱动电流偏弱,X4 需要接入+5V 的辅助供电,否则雷达工 作会出现异常。

图 4 YDLIDAR X4 辅助供电

驱动安装

在 windows 下对 X4 进行评估和开发时,需要安装 USB 转接板的串口驱动。本套件的 USB 转接板采用 CP2102 芯片实现串口(UART)至 USB 信号的转换。其驱动程序可以在我司官网下载,或者从 Silicon Labs 的官方网站中下载:

http://eaibot.com/

http://cn.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

解压驱动包后,执行 CP2102 的 Windows 驱动程序安装文件(CP210x_VCP_Windows 下的 exe 文件)。请根据 windows 操作系统的版本,选择执行 32 位版本(x86),或者 64 位版本 (x64)的安装程序。

	x64	2013/10/25 11:39	文件夹	
	x86	2013/10/25 11:39	文件夹	
Ş	CP210xVCPInstaller_x64.exe	2013/10/25 11:39	应用程序	1,026 KB
Ş	CP210xVCPInstaller_x86.exe	2013/10/25 11:39	应用程序	901 KB
•	dpinst.xml	2013/10/25 11:39	XML 文档	12 KB
	ReleaseNotes.txt	2013/10/25 11:39	文本文档	10 KB
	SLAB_License_Agreement_VCP_Windo	2013/10/25 11:39	文本文档	9 KB
2	slabvcp.cat	2013/10/25 11:39	安全目录	12 KB
3	slabvcp.inf	2013/10/25 11:39	安装信息	5 KB

图 5 YDLIDAR X4 驱动版本选择

双击 exe 文件, 按照提示进行安装。

图 6 YDLIDAR X4 驱动安装过程

安装完成后,可以右键点击【我的电脑】,选择【属性】,在打开的【系统】界面下,选择 左边菜单中的【设备管理器】进入到设备管理器,展开【端口】,可看到识别到的 USB 适配 器所对应的串口名,即驱动程序安装成功,下图为 COM3。(注意要在 X4 和 PC 互连的情况 下检查端口)

Sens	ing	
chan	ges	life

	-	×
文件(F) 操作(A) 查看(V) 帮助(H)		
♦ ➡		
✓ La DESKTOP-K5TM93U → DE ATA/ATAPI 控制器		^
🛛 🏣 Intel(R) Dynamic Platform and Thermal Framework		
≥ 🔐 安全设备		
> 🔲 处理器		
> 🔚 传感器		
> 🔜 磁盘驱动器		
> 🍇 存储控制器		
> 💼 打印队列		
> 🤪 电池		
~ 📮 端口 (COM和 LPT)		
Silicon Labs CP210x USB to UART Bridge (COM3)		
> 🎽 固件		
> 🔜 计算机		
> 🛄 监视器		
> 🛄 键盘		
> 🙀 人体学输入设备		
> 📓 软件设备		
> 📲 声音、视频和游戏控制器		
> 🚺 鼠标和其他指针设备		
✓ 単 通用串行总线控制器		
🟺 Intel(R) USB 3.0 可扩展主机控制器 - 1.0 (Microsoft)		
🖗 USB Composite Device		
🟺 USB 根集线器(USB 3.0)		
🐁 未知 USB 设备(设备描述符请求失败)		
> 🛑 网络话配器		~

图 7 YDLIDAR X4 驱动安装检查

使用评估软件

YDLIDAR 提供了 X4 实时扫描的点云数据可视化软件 PointCloud Viewer,用户使用该软件, 可以直观的观察到 X4 的扫描效果图。YDLIDAR 上提供了 X4 实时点云数据和实时扫描频率, 同时可以读取到 X4 的版本信息,并且可以离线保存扫描数据至外部文件供进一步分析。

使用 YDLIDAR 前,请确保 X4 的 USB 转接板串口驱动已安装成功,并将 X4 与 PC 的 USB 口互连。运行评估软件: PointCloudViewer.exe,选择对应的串口号和型号,以及是否选择心 跳功能。同时,用户也可以根据个人情况,选择语言和软件风格(右上角)。

YOLIDAR		•0	•
COM3	•	X4	•
掉电保护	取消	确定	

图 8 YDLIDAR X4运行评估软件

注: 雷达默认不开启心跳功能,该功能需要持续发送扫描命令,雷达才会正常工作,如果停止发送扫描频 率, 雷达会停止扫描。目前G4、F4 兼容该功能, X4、S4 不兼容。

确认后,客户端的页面如下:

图9客户端软件界面

开始扫描

在停止状态下点击启动/停止 按钮 ● 雷达会自动开始扫描,并显示环境点云,再点击一下 ● 雷达会停止扫描,如下图:

图 10 雷达扫描点云显示

系统设置

点击系统设置 ③,会弹出如下设置框:

③ 附加功能	?		×
模组配置 底座配置 电压检测 固件升级 系统更新			
● 在线 X4 ~	• (0	
○ 离线			
□ 擦除			
		-	
100%			0
(KOOT			۳

图 11 客户端设置框

如图所示,可在此设置页面对雷达进行相关的配置和检测,以及雷达固件升级,客户端软件升级等操作。

数据保存

在雷达扫描时,点击 🕒,按提示保存点云数据,系统便会按照如下格式保存扫描一圈的点云 信息。

angle:9.5469	,	distance:4654
angle:9.8125	,	distance:4709
angle:10.094	,	distance:4763
angle:10.625	,	distance:4947
angle:11.125	,	distance:6204
angle:11.203	,	distance:0
angle:11.391	,	distance:6253
angle:11.766	,	distance:0
angle:12.609	,	distance:0
angle:12.719	,	distance:7895

图 12 点云数据保存格式

测距频率

控件用于切换雷达的测距频率,X4支持4K、8K、9K的测距频率切换,F4Pro支持4K、
6K的扫描频率切换,其他版本雷达不支持该功能,点击无效。当雷达处于扫描状态时,切换
测距频率后需要重新点击扫描控件。

角度校准

用户在对雷达进行机械装配过程中,可能会出现零位角度有偏差,这时可以采用客户端的角 度校准功能按实际需求来进行校准。具体操作如下:

(1) 解锁校准功能

点击解锁控件^①,系统会弹出登入框,默认密码为 eaibot。解锁后 🖥 つ C 🕂 🖵 这 些控件的作用将有变化。

- (2) 设置基线点击 ➡ 控件,系统会提供相应大小的基线用作调整的参考线。
- (3) 调整角度点击つご控件,调整角度到合适位置。
- (4)保存配置调整结束后,点击[□]控件,系统会自动保存校准参数,保存后校准生效。
- (5) 上锁校准功能
 校准保存后,再次点击 一控件,给该功能上锁,防止误操作。上锁后,
 日う こ ・ ・
 」
 」
 こ

 </li

固件升级

点击系统设置,选择固件升级,如图 11。点击 ◎ 控件,获取最新固件。当有新版本时,用户可以点击 ➡ 控件,对雷达进行固件更新。

注:固件升级过程中,保持雷达供电正常、通信稳定、网络正常,不可随意拔插雷达串口

软件升级

客户端软件会进行版本更迭,用户可以更新到最新版本使用,以获得更佳的体验。

点击系统设置,选择软件更新,如下图:

砂附加功能	?	\times
模组配置 底座配置 电压检测 固件升级 系统更新		
 no proxy use system proxy setti use custom proxy sttin proxy ip address proxy port proxy user name proxy password 		
检测更新		
		\$
100%		8

图 13 系统更新页面

选择如上图配置,点击检测更新,如无新版本,系统会提示无需更新;当有新版本,软件版本信息会填入信息框,点击➡ 控件,对客户端软件进行更新。

LINUX 下基于 ROS 的使用操作

Linux 发行版本有很多,本文仅以 Ubuntu16.04、Kinetic 版本 ROS 为例。

文件说明

于官网下载 YDLIDAR 的最新 ROS 驱动包 http://www.eaibot.com/download;

解压后进入 launch 文件夹,该目录下有如下文件:

表 2 LAUNCH 目录文件说明

文件	描述
f4.launch	F4 雷达运行该文件,雷达开始扫描,无数据无点云显示
f4_view.launch	F4 雷达运行该文件,雷达开始扫描,并显示点云
X4.launch	X4 雷达运行该文件, 雷达开始扫描, 无数据无点云显示
X4_view.launch	X4 雷达运行该文件, 雷达开始扫描, 并显示点云
x4.launch	X4 雷达运行该文件, 雷达开始扫描, 无数据无点云显示
x4_view.launch	X4 雷达运行该文件, 雷达开始扫描, 并显示点云
Lidar.launch	F4、X4、X4 雷达运行该文件, 雷达开始扫描, 无数据无点云显示

Lidar view.launch

F4、X4、X4 雷达运行该文件, 雷达开始扫描, 并显示点云

注1: 需要选择正确的文件运行,如: X4 不能运行 f4_view.launch,可以运行 x4_view.launch 和 Lidar_view.launch;

注2: 运行Lidar_view.launch和Lidar.launch, 需要确认Lidar.launch的配置信息是否正确,详见配置说明

配置说明

X4 的配置文件保存在 x4. launch 中, 在修改 Lidar.launch 的参数时, 可参考 x4. launch 中的 配置。配置说明如下表:

表3 配置说明 文件 描述 雷达串口号,默认为 ydlidar, 接多个雷达时串口会出现重名错误 port 雷达串口波特率, X4 默认为: 128000 baudrate 雷达坐标系,默认为 laser_frame frame_id 角度修正设置,默认为 ture angle fixed 雷达信号强度,开关量,X4、X4、F4 固定为 false intensities 雷达扫描起始角度软设置,方向默认为顺时针方向 angle min 雷达扫描结束角度软设置,方向默认为顺时针方向 angle max 雷达最小测距范围,默认为0.08 range_min 雷达最大测距范围,默认为10.0 range_max 雷达扫描角度硬设置,默认不设置,系统默认使用软设置 ignore array

一般的,X4按以下配置即可:

<launch></launch>		
<node name="ydlidar_node" p<="" td=""><td>kg="ydlidar" '</td><td>type="ydlidar_node" output="screen"></td></node>	kg="ydlidar" '	type="ydlidar_node" output="screen">
<param <="" name="port" td=""/> <td>type="string"</td> <td>value="/dev/ydlidar"/></td>	type="string"	value="/dev/ydlidar"/>
<param <="" name="baudrate" td=""/> <td>type="int"</td> <td>value="128000"/></td>	type="int"	value="128000"/>
<param <="" name="frame_id" td=""/> <td>type="string"</td> <td>value="laser_frame"/></td>	type="string"	value="laser_frame"/>
<param <="" name="angle_fixed" td=""/> <td>type="bool"</td> <td>value="true"/></td>	type="bool"	value="true"/>
<param <="" name="intensities" td=""/> <td>type="bool"</td> <td>value="false"/></td>	type="bool"	value="false"/>
<param <="" name="angle_min" td=""/> <td>type="double"</td> <td>value="-180" /></td>	type="double"	value="-180" />
<param <="" name="angle_max" td=""/> <td>type="double"</td> <td>value="180" /></td>	type="double"	value="180" />
<param <="" name="range_min" td=""/> <td>type="double"</td> <td>value="0.08" /></td>	type="double"	value="0.08" />
<param <="" name="range_max" td=""/> <td>type="double"</td> <td>value="10.0" /></td>	type="double"	value="10.0" />
<param <="" name="ignore_array" td=""/> <td>type="string"</td> <td>value="" /></td>	type="string"	value="" />
<pre><node 0.0="" 0.12="" 0.2="" 0.2245="" 0<="" pkg="tf" pre="" type="static_' args="></node></pre>	transform_publ: 0.0 0.0 /base	isher" name="base_link_to_laser4" footprint /laser frame 40" />

图 14 X4.LAUNCH 默认配置

设备连接

Linux下,X4和PC互连过程和Windows下操作一致,参见Window下的设备连接。

ROS 驱动包安装

在进行以下操作前,请确保 Kinetic 版本 ROS 环境安装正确。

具体步骤如下:

(1) 使用命令创建 ydlidar_ws 工作空间,并将 X4 资料包内的 ROS 驱动包 ydlidar 复制到 ydlidar_ws/src 目录下,切换到 ydlidar_ws 工作空间下并重新进行编译。

```
$ mkdir -p ~/ydlidar_ws/src
$ cd ~/ydlidar_ws
$ catkin_make
```

(2) 编译完成后,添加 ydlidar 环境变量到~/.bashrc 文件中,并使其生效。

```
$ echo "source ~/ydlidar_ws/devel/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
```

(3) 为X4的串口增加一个设备别名 /dev/ydlidar。

```
$ cd ~/ydlidar_ws/src/ydlidar/startup
$ sudo chmod +x initenv.sh
$ sudo sh initenv.sh
```

RVIZ 安装

(1) 联网安装依赖包。

```
$ sudo apt-get install python-serial ros-kinetic-serial g++ vim \
ros-kinetic-turtlebot-rviz-launchers
```

(2) 若安装有问题,先更新源缓存再重新安装。

```
$ sudo apt-get update
```

RVIZ 查看扫描结果

运行 launch 文件, 打开 rviz 查看 X4 扫描结果, 如下图所示:

```
$ roslaunch ydlidar x4 view.launch
```


图 15 YDLIDAR X4 RVIZ 运行显示

修改扫描角度问题

运行 launch 文件看到的扫描数据,默认显示的是 360 度一圈的数据,若要修改显示范围,则 修改 launch 内的配置参数,具体操作如下:

(1) 切换到 x4.launch 所在的目录下,并使用 vim 编辑 x4.launch,其内容如图所示:

```
$ roscd ydlidar/launch
$ vim x4.launch
```

< raunch >
<node name="ydlidar_node" output="screen" pkg="ydlidar" type="ydlidar_node"></node>
<pre><param name="port" type="string" value="/dev/ydlidar"/></pre>
<pre><param name="baudrate" type="int" value="128000"/></pre>
<pre><param name="frame_id" type="string" value="laser_frame"/></pre>
<param name="angle_fixed" type="bool" value="true"/>
<param name="intensities" type="bool" value="false"/>
<pre><param name="angle_min" type="double" value="-180"/></pre>
<param name="angle_max" type="double" value="180"/>
<param name="range_min" type="double" value="0.08"/>
<param name="range_max" type="double" value="10.0"/>
<param name="ignore_array" type="string" value=""/>
<pre><node args="0.2245 0.0 0.2 0.12 0.0 0.0 /base footprint /laser frame 40" name="base_link_to_laser4" pkg="tf" type="static_transform_publisher"></node></pre>
<pre>/launch></pre>

图 16 LIDAR.LAUNCH 文件内容

(2) X4 雷达坐标在 ROS 内遵循右手定则,角度范围为[-180,180], "angle_min"是开始角度,"angle_max"是结束角度。具体范围需求根据实际使用进行修改。

图 17 YDLIDAR X4 坐标角度定义

使用注意

环境温度

当 X4 工作的环境温度过高或过低,会影响测距系统的精度,并可能对扫描系统的结构产生损害,降低雷达的使用寿命。请避免在高温(>40 摄氏度)以及低温(<0 摄氏度)的条件中使用。

环境光照

X4 的理想工作环境为室内,室内环境光照(包含无光照)不会对 X4 工作产生影响。但请避免使用强光源(如大功率激光器)直接照射 X4 的视觉系统。

如果需要在室外使用,请避免 X4 的视觉系统直接面对太阳照射,这将这可能导致视觉系统的感光芯片出现永久性损伤,从而使测距失效。

X4标准版本在室外强烈太阳光反射条件下的测距会带来干扰,请用户注意。

供电需求

在开发过程中,由于各平台的 USB 接口或电脑的 USB 接口的驱动电流可能偏低,不足以驱动 X4,需要通过 USB 转接板上的 USB_PWR 接口给 X4 接入+5V 的外部供电,不建议使用手机充电宝,部分品牌电压纹波较大。

修订

日期	版本	修订内容
2017-12-5	1.0	初撰
2018-01-22	1.1	新增辅助电源接法、文件说明、配置说明、供电需求
2018-04-03	1.2	适配 PointCloud Viewer2.0 使用说明